
Software Process Validation:
Quantitatively Measuring the Correspondence

of a Process to a Model

Jonathan E. Cook Alexander L. Wolf

Department of Computer Science Department of Computer Science
New Mexico State University University of Colorado
Las Cruces, NM 88003 USA Boulder, CO 80309 USA

jcook@cs.nmsu.edu alw@cs.colorado.edu

University of Colorado
Department of Computer Science

Technical Report CU-CS-840-97 May 1997

c© 1997 Jonathan E. Cook and Alexander L. Wolf

ABSTRACT

To a great extent, the usefulness of a formal model of a software process lies in its ability
to accurately predict the behavior of the executing process. Similarly, the usefulness of an
executing process lies largely in its ability to fulfill the requirements embodied in a formal
model of the process. When process models and process executions diverge, something
significant is happening.

We have developed techniques for uncovering and measuring the discrepancies between
models and executions, which we call process validation. Process validation takes a pro-
cess execution and a process model, and measures the level of correspondence between
the two. Our metrics are tailorable and give process engineers control over determining
the severity of different types of discrepancies. The techniques provide detailed infor-
mation once a high-level measurement indicates the presence of a problem. We have
applied our process validation methods in an industrial case study, of which a portion is
described in this paper.

This work was supported in part by the National Science Foundation under grant CCR-93-02739 and by the Air
Force Material Command, Rome Laboratory, and the Defense Advanced Research Projects Agency under Contract
Number F30602-94-C-0253. The content of the information does not necessarily reflect the position or the policy of
the Government and no official endorsement should be inferred.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 1997 2. REPORT TYPE

3. DATES COVERED
 00-00-1997 to 00-00-1997

4. TITLE AND SUBTITLE
Software process Validation: Quantitatively Measuring the
Correspondence of a Process to a Model

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Department of Computer Science,University of
Colorado,Boulder,CO,80309

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

28

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1 Introduction

Whenever a model of a system is created, the question arises as to whether that model faithfully
captures the system. In software process research, where the model is typically embedded and
executed within an automated software engineering environment [25], this question is avoided; the
model and process are necessarily in agreement because the model becomes the process.

When applied in software process practice, however, this approach suffers from a fundamental
flaw. In particular, it assumes that virtually the entire process is executed within the context of
the environment. In fact, critical aspects of the process occur off the computer and, therefore,
not under the watchful eye of the environment [43, 46, 47]. That being the case, there is no
effective way to enforce the process using this approach nor to guarantee the mutual consistency
of a process model and a process execution. Moreover, deviations from the process are naturally
to be expected [14, 20, 27].

Even if one could completely enforce a process, there still remains the issue of managing change
in a process, which might also lead to a discrepancy between the model and the execution. There
has, in fact, been considerable work that addresses process evolution [3, 30]. Commensurate with
the historical approach mentioned above, that work is concerned more with the problem of effect-
ing changes to a process model used for automation, than it is with the problem of uncovering
inconsistencies between the model and the execution.

We have developed techniques for detecting and characterizing differences between a formal
model of a process and the actual execution of the process. We refer to this activity as process
validation [12]. The techniques are neutral with respect to the correctness of the model (“Does
our model reflect what we actually do?”) and the correctness of the execution (“Do we follow our
model?”). The process engineer has ultimate responsibility for making the appropriate determina-
tion of whether a problem lies within the model or within the execution, based on the particular
inconsistency uncovered. The validation techniques have been implemented in a prototype tool,
which has been used as part of an industrial process data analysis case study [11]

Process validation serves several purposes. For one, confidence in a formal process model is
raised when it can be shown that the process execution is consistent with the behavior described
by the model. This, in turn, raises confidence in the results of any analyses performed on the
formal model. For another, process validation can be used as a process enforcement tool, uncov-
ering differences between intended behavior and actual behavior. It is potentially a more flexible
enforcement tool than others proposed, since it can accommodate the unavoidable, yet necessary,
local perturbations in a process. Finally, process validation can reveal where a process may need
to actually evolve to accommodate new project requirements and activities.

The techniques borrow from various areas of computer science, including distributed debugging,
concurrency analysis, and pattern recognition. The techniques go further than simply detecting an
inconsistency; they provide a measure of that inconsistency. We believe that developing metrics
for process validation is critical because the highly dynamic and exceptional nature of software
processes means that simple yes/no answers carry too little information about the significance of
any given inconsistency. Managers need to understand where an inconsistency occurs and how
severe that inconsistency might be before taking any corrective action.

The next section presents the framework in which this work is cast. Section 3 then states the
process validation problem and outlines our approach. Section 4 defines the validation metrics and
Section 5 presents example uses of the metrics. The issue of deriving a characteristic behavior from
a process model is discussed in Section 6. Section 7 presents a short review of an industrial case
study in which the validation techniques were successfully applied. Section 8 summarizes work

1

related to process validation. Finally, we describe our implementation of a validation tool and
discuss some ideas for future work in Section 9.

2 An Event-Based Framework for Process Validation

The foundation on which our process validation work rests is a view of processes as a sequence
of actions performed by agents, either human or automaton, possibly working concurrently. With
this, we are taking a decidedly behavioral view of processes, because we are interested in the
dynamic activity displayed by the processes, rather than, say, the static roles and responsibilities
of the agents or the static relationships among components of the products. This does not mean
that other aspects of a process are not worthy of study; it is just that the issues we have chosen to
investigate are those having to do with behavior rather than structure.

2.1 Events

Following Wolf and Rosenblum [46], we use an event-based model of process actions, where an
event is used to characterize the dynamic behavior of a process in terms of identifiable, instantaneous
actions, such as invoking a development tool or deciding upon the next activity to be performed.
The use of events to characterize behavior is already widely accepted in other areas of software
engineering, such as program visualization [36], concurrent-system analysis [2], and distributed
debugging [5, 15].

The “instant” of an event is relative to the time granularity that is needed or desired; thus,
certain activities that are of short duration relative to the time granularity are represented as a single
event. An activity spanning some significant period of time is represented by the interval between
two or more events. For example, a meeting could be represented by a “begin-meeting” event and
“end-meeting” event pair. Similarly, a module compilation submitted to a batch queue could be
represented by the three events “enter queue”, “begin compilation”, and “end compilation”.

For purposes of maintaining information about an action, events are typed and can have at-
tributes; one attribute is the time the event occurred. Generally, the other event attributes would
be items such as the agents and artifacts associated with an event, the tangible results of the action
(e.g., pass/fail from a design review; errors/no-errors from a compilation), and any other informa-
tion that gives character to the specific occurrence of that type of event. In the work described
here, we do not make use of attributes other than time.

The overlapping activities of a process, then, are represented by a sequence of events, which we
refer to as an event stream. For simplicity, we assume that a single event stream represents one
execution of one process, although depending on the data collection method, this assumption can
be relaxed.

The ability to collect events is central to supporting event data analysis. Fortunately, the tools
and environments of today provide strong support for logging the events that occur on a system.
A version control system, for example, logs the accessing and modification of documents and code.
Off-computer events, such as meetings or phone calls, can be logged manually. Email logs (e.g.,
using a project alias) can be a starting point for collecting communication events. A detailed
discussion of the existing support for collecting events and previous studies that have made use of
events is beyond the scope of this paper, but can be found elsewhere [10, 11, 13].

2

Model Events

Collected Events

Execution Events

Figure 1: Venn Diagram of Event Types.

2.2 Relating Models and Events: Event Sites

For our purposes we focus on behavioral process modeling formalisms. These include mod-
els based on state machines (e.g., Statemate [29]), Petri nets (e.g., SLANG [4] and FUNSOFT
Nets [28]), procedural languages (e.g., APPL/A [44]), and rule-based languages (e.g., Oz [6]). We
assume that a model described in any such formalism induces one or more event streams, and thus
it has places in its behavioral description where events can be recognized. We call these places
event sites. A state machine, for example, has state transitions as event sites, where a transition is
labeled with the event it produces. A Petri net also naturally has its transitions as event sites—a
firing sequence is, in effect, an event stream. A rule-based language would have rules as event sites.
Note that not all transitions (or rules) must be event sites. There may be internal behavior in a
model that does not need to be visible to event stream analyses.

Event sites are typed—that is, each event site produces a specific type of event. For each event
type, then, there is a set of event sites in a process model that produce it.

2.3 Event Domains

Given the distinction between the process model and the process execution, there are really
two universes of event types. One universe is the set of event types associated with the model of
a process, while the other is the set of event types associated with the execution of the process.
Their conceptual relationship is depicted in Figure 1, which indicates that the sets are not neces-
sarily equivalent. For example, consider an organization that executes a particular process. Some
members of that organization may informally and unilaterally decide to perform occasional code
inspections; a formal model of that process might not account for such an ad hoc activity. Con-
versely, a model adopted from another organization might include a subprocess for design reviews,
but the adopting organization might decide never to perform that activity.

A third set of event types, also shown in Figure 1, are those that are actually collected as data.
Since this set must necessarily be a subset of the execution events (one cannot record something
unless it actually occurs), it can be viewed as a window onto the actual process execution. This
window might not show the whole execution, because there may be some activities for which no
event data are collected. There are several reasons why this might occur, but two obvious ones are
that data about a particular event type might be considered inconsequential or the data might be
considered too expensive to collect. For instance, events that occur off the computer, such as most

3

staff meetings, are likely to be more expensive to collect than events that occur on the computer,
simply because off-computer events would require manual, as opposed to automated, collection
techniques.

It is important to note that we concentrate here on event types, which are abstractions of the
activities in a process. We assume that the model and the execution agree to a significant extent
about the set of event types (i.e., activities) involved in the process, although they may not agree
on the specific orderings and numbers of events of those types. If they did not largely agree on the
basic sets of activities, then it would not be clear what it would mean for them to be relating to
the same process. Indeed, modeling and data collection are often closely related, in the sense that
models are used to frame the data collection activity, and vice versa.

We do not, however, assume that the particular names for the event types used in the model
and found in the collected execution data are equivalent. Fortunately, this is a simple syntactic
issue that can be easily dealt with through a name mapping applied to either event stream. In fact,
the data analysis framework within which our validation tool is implemented provides a convenient
mechanism based on regular expressions for creating and applying such mappings to the execution
stream [13]. The mechanism additionally allows the analyst to extract events from the data and
map them to event types at arbitrary levels of granularity. In particular, the granularities of event
types derived from the data can be made to match the granularity of event types found in a model.

3 Problem Statement and Approach

In our framework for process validation, we have an executing process that produces an actual
event stream and, on the other side, we have a model that induces a desired or prescribed event
stream. Thus, we can cast the validation problem as quantitatively measuring how close the event
stream of the executing process resembles an event stream induced by the model. We call these
two event streams the execution event stream and the model event stream, respectively. Figure 2
depicts the process validation framework.

There are several methods for performing a measurement such as this, but one that seems
most applicable is the string distance metric [35]. A string distance metric counts the number of
token insertions, deletions, and substitutions needed to transform one string into the other. By
applying various mathematical transformations, this method becomes a family of metrics. String
distance metrics have been used in applications as varied as DNA/RNA matching [45], substring
matching [32, 41], spelling error correction [18], syntax error correction [1, 24, 40], and text file
differencing as in the UNIX tool diff. In general, string distance metrics have become the standard
method in any domain requiring symbolic sequence comparison.1

Other methods that could be used to quantify the difference between two event streams do not
offer the versatility of string distance metrics. Hamming distance, for example, is the count of the
number of tokens that differ, but this method assumes that either the streams are the same length
or that they can be suitably matched and padded. In fact, string distance metrics can subsume
this method by ignoring the insertion and deletion operations, and just tallying substitutions.

1Numeric sequences, which are really a representation of some mathematical function (e.g., a time series of a stock
value), is a different topic altogether.

4

Produces

Executing Process

Event 1
Event 2
Event 3

Event 76
Event 77
Event 78

Event Stream Process Model

Induces

Event 1
Event 2
Event 3

Event 83
Event 84
Event 85

Event Stream

Comparison

Measurements

Figure 2: Process Validation Framework.

4 Validation Metrics

In this section we introduce two metrics for determining the correspondence between a formal
model of a process and an execution of the process. They share the characteristic that they use
string distance to compare the event stream produced by a process execution to an event stream
representing a possible behavior predicted by the process model. The issue of how the second of
these event streams is constructed is an important one and is discussed in Section 6. We defer
detailed examples of applying the metrics to Section 5.

4.1 Simple String Distance Metric

The first metric uses a simple, direct approach to measuring string distance, and thus we refer to
it as the simple string distance (SSD) metric. Under this method, the distance between two strings is
measured by counting the minimum number of token insertions, deletions, and substitutions needed
to transform one string into the other. For our purposes, we choose the execution event stream as
the one to which the operations are applied.2 With this choice, insertions represent missed activities
(the model predicted them but the execution did not perform them), and deletions represent extra
activities (the model did not predict them, but they were performed in any case).

As an example, consider the execution and model event streams shown in Figure 3a, where the
lettered boxes represent events. The lines drawn between the two streams indicate one possible
correspondence between their respective events. The transformation of the execution stream into
the model stream is depicted in Figure 3b. In particular, we delete a C, substitute a D for a C,
and insert an E, a D, and another E. The resulting value for the distance is then 5. This happens
to be the minimum transformation required.

To strengthen the metric, weights can be assigned to each of the operation types (insertion,

2The operations are isomorphic, so choosing one event stream rather than the other does not change the resulting
measurement, it just reverses the senses of insertion and deletion.

5

CA B C A B D E E E B D C AEC
SSD
Transform
Stream

CA B C A B D E E E B D C AEC
NSD
Transform
Stream

A B C A B D E E E B D C AE

Execution
Stream

Model
Stream

A B C E E BC A B C AC

(a)

(b)

(c)

Figure 3: Example Execution and Model Event Streams (a), with Execu-
tion Stream Transformed for the SSD Metric (b) and the NSD
Metric (c) Calculations.

deletion, and substitution), giving a relative cost to each operation. Then, instead of minimizing
the number of operations to calculate the distance, the goal would be to minimize the total cost of
the operations. Given two strings, one of length M and the other of length N , the minimum total
cost of operations can be computed in O(MN) time using a well-known dynamic program [35].

In some applications of this method, such as DNA/RNA sequencing or text recognition, token
substitution in the string distance metric makes sense. For process validation, however, it is not
clear that a substituted event should contribute in any way to the measure of the correspondence.
To account for this, we can set the weight of substitution to be greater than the sum of the insertion
and deletion weights, so that substitution is never applied, since it would then be less costly to apply
a deletion and insertion pair at the potential substitution point. We will not consider substitution
further in this paper.

The SSD metric is formulated as the following equation:

SSD =
WINI +WDND

WmaxLE

where WI and WD are the weights for the insertion and deletion operations, NI and ND are the
number of insertion and deletion operations performed on the execution event stream, Wmax is the
maximum of WI and WD, and LE is the length of the execution event stream. The divisor in the
equation normalizes the value to the size of the input and the maximum weight used.

6

The weights WI and WD act as tuning parameters for the metric and can be used to highlight
different properties of the process. For example, one could argue that insertions into the execution
event stream are more costly than deletions, since they inherently represent missed activities in the
process execution. Conversely, deletions from the execution event stream in some sense represent
extra work that was performed (from the perspective of what is predicted by the formal model)
and extra work probably does not affect the correctness of the process execution. Thus, we can set
WI �WD to reflect this property.

The values of the metric are, for all intents and purposes, bounded between 0 and 1.0. Although
technically a value greater than 1.0 could appear (e.g., if all events are deleted and some others
are inserted), this is unlikely. Thus, one might pick the standard statistical correlation rules of
thumb [16] and say that any measurement less than 0.2 is a strong correspondence, less than 0.5 is
a moderate correspondence, and greater than 0.5 is a weak correspondence.3

4.2 Non-linear String Distance Metric

A characteristic of the SSD metric is that it is focused narrowly on the costs of individual
string transformation operations, since each operation is weighted separately. In terms of process
behavior, though, a sequence of missed activities, for example, can be viewed as a single deviation
from the expected (model) behavior, and might potentially be a more serious breech of desired
execution than can be represented by a simple count of those missed activities. Our next metric
accounts for this.

The non-linear string distance (NSD) metric is an enhancement to the SSD metric based on the
notion of a sequence of insertions or a sequence of deletions. A sequence of insertions or a sequence
of deletions is called a block. By sequence we mean an unbroken series of like transformation
operations. In Figure 3c, for example, NSD recognizes the consecutive D and E insertions required
at the end of the streams as an insertion block of length 2. All other blocks in the figure are of
length 1.

The NSD metric uses block lengths to calculate values. The distance equation then becomes:

NSD =

∑NB
I

j=1WIf(bj) +
∑NB

D
k=1WDf(bk)

WmaxLE

where NB
I and NB

D are the numbers of insert and deletion blocks, b is a particular block length,
f(b) is a cost function applied to a block length b, and all other terms are the same as in the SSD
metric. Note that the weights WI and WD could be pulled into the cost function f , but we have
left them outside to more easily compare the NSD and SSD metric equations.

The definition of the cost function f is an additional tuning parameter in the NSD metric. A
rather natural function to use would be an exponential one, such as:

f(b) = ek(b−1)

where k is a constant and is the actual tuning parameter. This equation yields 1.0 for a block
length of 1, so if all blocks are kept to a length of 1, then the NSD equation reduces to the SSD
equation, as expected. The cost function yields exponentially increasing values for blocks greater
than 1. Notice that for k < 0.7 and a block length of 2, the function would cause the distance
value to be less than the corresponding value given by the SSD metric, which is not what we want.

3Actually, these are inversions of the standard statistical rules of thumb, but their effect is the same.

7

For this reason, we only consider k > 0.7 so that the value produced by the NSD metric is always
greater than the value produced by the SSD metric for blocks of length greater than 1. Practical k
values range from about 1 to 3, with larger values being used when blocks are small but important.

Unlike the SSD metric, the NSD metric is unbounded on the high end, although bounded by 0
at the low end. Thus, it is harder for us to say what value might represent a good correspondence
between model and execution and what might represent a bad correspondence. We can, however,
derive some values from the rules of thumb we used for the SSD metric (i.e., the 0.2 cutoff for
good correspondence and 0.5 for moderate correspondence). What is needed for the NSD rules of
thumb is a notion of the average block length that could be expected in an event stream with good
correspondence to the model. With this defined as Bavg, our derived cutoff for good correspondence
for the NSD metric is as follows.

C =
0.2ek(Bavg−1)

Bavg

This takes the SSD good correspondence cutoff of 0.2 and weights it according to the exponential
weight of the average expected block length, taking into account the tuning parameter k. For
example, if one sets Bavg = 2.5 and k = 1.5, then the cutoff value for good correspondence would
be C = 0.76. This value nicely reduces to the SSD cutoff value for Bavg = 1. For the moderate
cutoff value, we would use 0.5 in place of 0.2. Note that as a history of applying the NSD metric
to a process is accumulated, the actual value of Bavg for that process will be known.

4.3 Event Type Weighting

We have included in our validation metrics a means to differentially weight the insertion and
deletion transformation operations. We did this because they represent conceptually different kinds
of deviations, namely missed and extra activities, respectively.

But, at a finer level of granularity, it would also be useful to differentiate the relative importance
of specific types of events. For example, an event representing the conclusion of a regression testing
activity might be considered more important than an event representing the conclusion of a weekly
team training meeting. One would like to be able to distinguish the significance of missing each of
kind of event as part of the process validation.

The SSD and NSD metrics easily incorporate such a weighting scheme. The process engineer
can override the default insertion and deletion weights, and vary the operation weights according to
the type of event involved in the operation. The default weights are still used in the normalization
part of each metric’s equation.

4.4 Auxiliary Measures

As presented, the metrics provide a single value as the measure of correspondence. This measure
by itself is useful to indicate the presence of a potential problem. But a deeper understanding of
the deviation is needed to uncover the source of the problem. The SSD and NSD metrics naturally
provide auxiliary measures to the analyst, including:

• the number of events that match in the compared streams;

• the number of insertion and deletion operations used to calculate the metric;

• the number, size, and average size of blocks of operations;

• the number of matches, insertions, and deletions per event type;

8

• the locations in the execution event stream where deviations occur; and

• the locations in the model where deviations occur.

These auxiliary measures enhance the usefulness of the basic metrics. In Section 7 we show how they
contribute detailed and important information to an understanding of deviations in an industrial
case study.

5 Example Use of the Metrics

To illustrate the two validation metrics introduced above, we use the Test Unit task from the
ISPW 6/7 process problem [33]. This is a simple and small process fragment, but it should give
the reader a feeling for how the metrics are applied to a process.

In this task, a developer and a tester are involved in testing a module that has undergone some
change. They are to retrieve the test suite from configuration control, build the test executable,
run all the specified tests, and make sure that at least a 95% code coverage has been achieved by
the tests. If a failure occurs, either because the new module has an error or the test suite needs
updating, then they are to notify the module developers or test developers, as appropriate. Upon
a successful completion of the tests, they are to store the test results under configuration control
and alert the manager to the new status of the module.

Figure 4 shows a colored Petri net model [31] of this process. Circles denote places and rectangles
denote transitions. Tokens have attributes (i.e., are colored) and those attributes are used by
transition predicates to deterministically control the transition firing. Thick rectangles correspond
to transitions that are event sites in the model and are labeled with the event that is produced at
that site. Thin rectangles correspond to (internal) transitions used to control the model but that
are not themselves event sites. To keep the figure simple, we collapse the begin/end event pairs
of an activity into one (pseudo) event type; each event site can be thought of as a two-transition
sequence with the first producing the begin event and the second producing the end event. We use
familiar UNIX command names as the names of event types.4

Table 1 shows five example pairs of execution and model event streams. A blank space in an
execution event stream is a point at which the model has predicted that a particular event should
have occurred, but in fact that event did not occur. Similarly, a blank space in a model event
stream is a point at which an event occurred in the execution that was not predicted by the model.
Intuitively, such blanks correspond to either missed or extra activities in the process execution,
or to an error in the model. For example, in stream 3, the execution involves three consecutive
invocations of the “make” tool, perhaps as a result of some problem performing the build, while
the model predicts that only one should have occurred.

The SSD and NSD metric calculations require transformation of an execution event stream into
the corresponding model event stream by means of insertion and deletion operations.5 We apply
an insertion operation at a blank in the execution event stream, and we apply a deletion operation
at a blank in the model event stream.

4For those unfamiliar with the UNIX command names appearing in the figure, “co” and “ci” are the check-out
and check-in commands for a configuration management tool, “make” is a build tool, “exec” stands for the running
of an executable (i.e., a test run, in this case), “tcov” is a test coverage tool, “diff” is a text differencing tool, and
“mail” is an electronic mail tool.

5Recall that we chose to use the execution event stream as the one to which the transformation operations are
applied (see Section 4).

9

Example 1 Example 2 Example 3 Example 4 Example 5
execution model execution model execution model execution model execution model

co co co co co co co co co co
make make make make make make make make make make
exec exec exec exec make exec exec exec exec
diff diff diff diff make diff diff diff diff
exec exec exec exec exec exec exec exec exec
diff diff diff diff diff diff diff diff diff diff
tcov tcov exec exec exec exec exec exec exec exec
ci ci diff diff diff diff diff diff diff

mail-m mail-m tcov tcov tcov tcov tcov tcov exec exec
mail-t mail-t ci mail-d diff diff

mail-m mail-m ci tcov
mail-m ci

mail-d mail-d

Table 1: Example Pairs of Execution and Model Event Streams.

SSD NSD NSD SSD NSD NSD
WI = 1 WI = 1 WI = 1 WI = 4 WI = 4 WI = 4
WD = 1 WD = 1 WD = 1 WD = 1 WD = 1 WD = 1

Stream # # Ins # Del k = 1.5 k = 3 k = 1.5 k = 3

1 0 0 – – – – – –
2 1 0 0.11 0.11 0.11 0.11 0.11 0.11
3 1 2 0.30 0.55 2.11 0.15 0.21 0.60
4 2 1 0.30 0.55 2.11 0.23 0.47 2.03
5 3 0 0.30 0.55 2.11 0.30 0.55 2.11

Good Cutoff Values 0.20 0.45 2.01 0.20 0.45 2.01

Table 2: Example Event Stream Measurements for the Streams of Table 1.

Table 2 shows validation measurements for the event streams in Table 1. Each row contains
measurements for the correspondingly numbered example event stream. The first two columns give
the raw number of insertions and the raw number of deletions needed to transform the execution
event stream into the model event stream.

The last six columns of Table 2 give the results of the parameterized string distance calculations.
We vary the relative weights of WI and WD for both the SSD and NSD metrics, and vary the
exponential constant k for the NSD metric. We present cases where the weights are equal (WI =
WD = 1) and cases where the insertion cost is weighted heavier (WI = 4WD) to highlight missed
events in the execution.6 The exponential constant k for the NSD metric is given values 1.5 and 3
to show the magnitude of change and the unboundedness of the metric. The last row of the table
shows the cutoff values for the “good” correspondence rules of thumb for each metric; values in
a column that are less than the bottom row fall into what we would call a good correspondence
between the model and the execution event streams. For the NSD metric cutoffs, the average
expected block length, Bavg, is taken to be 2.

There are several interesting things to see in the measurements presented in Table 2. The first
observation is the similarity of values for the three columns with WI = WD = 1. For streams 3,

6The cost ratio given by WI = 4WD was chosen arbitrarily for this example. In practice, a process engineer would
explore various ratios that might best reflect the actual situation they are analyzing.

10

4, and 5, which all have one block of length 1 and one of length 2 (though in different operation
combinations), these measurements do not differentiate among the discrepancies. On the other
hand, if one looks at the measurements with WI = 4 and WD = 1 (the last three columns) for
event streams 2 and 3, one can see the effect of weighting insertions heavier than deletions. For
the SSD metric, the measurement only changes by 0.04 with the addition of the two deletes (in
stream 3), and still remains well within the good correspondence range for the NSD metric. For
stream 3, the SSD with WI = 4 also produces a measurement that is in the good correspondence
range, whereas the SSD with WI = 1 is in the moderate range (0.2–0.5). Since stream 3 has just one
insertion, like stream 2, this weighting better reflects the correspondence of the execution streams
than does the WI = 1 weighting.

For event stream 4, where the insertions have a block of length 2 rather than the deletions as
in stream 3, the last three measurements (with WI = 4 and WD = 1) are significantly greater than
for event stream 3. This shows how the metrics can be tuned to place importance on insertions—
that is, on missed events in the process execution. Event stream 5 also shows this in the last two
measurements, where it has all insertions, and the difference in the weighting of insertions is evident
in comparison to event streams 3 and 4.

6 Deriving the Model Event Stream

Section 4 presents the process validation metrics assuming the existence of two event streams,
an execution stream and a model stream. However, we are given only one stream, the execution
stream. Instead of a model stream, we have a model that describes a set of streams. To perform
the measurement, we must induce a model stream from the model.

The challenge, of course, is that a formal model of any but the most trivial process likely leads
to a large, if not infinite, number of possible event streams. How do we choose one? Because we are
measuring correspondence, we need to derive a model event stream that most closely matches the
execution event stream, in order to get as useful a measure as possible. By “most closely” we mean
the model stream that gives the minimum distance measurement. Any other model stream would
imply a greater discrepancy than necessary. It is important to note that closeness is not a fixed
property of the relationship between an execution event stream and a model, but also depends on
the validation metric being applied and on the weightings used with the metric; different weights
on the insertion and deletion operations (and on the event types) will affect which model stream is
the closest.

Deriving a model stream does not have to be a blind generate-and-test effort. For example, if
the execution stream exactly matches the model, then one wants to choose the model stream that
is the execution stream. If there are small differences, one still wants to choose a model stream that
is almost like the execution stream. Thus, the model stream derivation problem can be restated
as finding the smallest changes to the execution stream that make it a valid model stream. These
changes are exactly the insertions and deletions that contribute to the distance metrics. Clearly,
both the execution stream and the model itself can and should be used to derive the model stream
used in the metric calculation.

6.1 Background

There are three main areas of related work that have addressed a problem similar to that of
our model stream derivation problem: error-correcting parsing, behavior searching, and regular
expression matching. All of the approaches use both a given “stream” and a model. We review the

11

work in these areas to place our approach in context.

6.1.1 Parsing

When a syntax error is encountered, a modern compiler for a programming language is expected
to report the error and then recover in some way so that it can continue to parse the rest of the
program. In essence, the compiler must find a correction between a given string of tokens (the
program) and a model (the syntax of the language), so that the model can continue to match the
rest of the tokens. A minimal correction is desired to allow the compiler to process as much of the
program as possible, and thus this problem is similar the one we face in process validation.

Compiler research has produced several methods of interest here.

• Aho and Peterson [1] show a cubic algorithm for performing globally minimum cost error
correction in terms of token insertion and deletion. They do not expect their algorithm to be
used, however, because of its high cost. Rather, they propose it as a baseline against which
to compare other methods.

• Röhrich [40] describes an error correction method biased towards insertion of symbols, arguing
that as little of the program text should be skipped (deleted) as possible. This method is
based on the idea of minimum distance correction, but makes the assumption that one never
needs to back up in the input stream to find a good correction.

• Fischer and Mauney [24] describe a method for locally least cost error correction. They are
also biased towards insertions, but include deletions. Their method uses a local search with
a priority queue to find a locally minimum cost fix. They show that their method is fast
enough to reasonably implement in a compiler.

These techniques have been specifically developed for programming language parsing, and for the
grammars that are used in that domain. Some of the critical assumptions, such as not being able
to back up in the input stream, are not necessarily valid in the software process domain. Thus,
in general, these techniques are not applicable to our model event stream derivation problem.
Nevertheless, they demonstrate two important points: optimal solutions are cost-prohibitive and
heuristics can be effectively employed in practice.

6.1.2 Behavior Searching

Model checking is a technique to efficiently explore a finite state space for inherent behav-
ioral properties, including whether a particular behavior is allowed by a model. In one example,
Burch et al. [8] describe a model checker based on binary decision diagrams that is able to check
models with 1020 states, where previous work had only handled 108 states. While this is impressive,
the models being analyzed were of a pipelined arithmetic logic unit, which has many self-similar
states resulting from the width of bits that make up a value. Their model checker directly repre-
sents this regularity in the state space, so that they avoid, to a large extent, the state explosion. If
models do not have regularity in the state space, they admit that their techniques will not provide
much leverage.

Another example of a technique to search for a behavior is found in the Constrained Expressions
framework [2, 17]. This is a method that, given a model, a current simulation state of that model,
and a desired event, can answer the question: “Can this event be produced in the future?”. The
model is stated as a system of event sequences, specified by extended regular expressions. This

12

representation, along with the desired event or event sequence to find in the behavior, is reduced
to a system of inequalities that are fed into an integer linear solver. The solver produces a binary
answer indicating success or failure of the search and, if it finds a solution, several parameters.

If the solver answer is “yes”, heuristics are used along with the parameters from the solver to
produce a plausible behavior that leads to the event. This behavior constitutes the next sequence of
model events. Unfortunately, if the answer is “no”, the Constrained Expressions framework cannot
help in determining a correction to the event stream or model state to continue the analysis of the
rest of the event stream.

Our problem of process validation needs techniques that analyze the model in the continual
presence of deviations from the model. Thus, it appears that techniques like those of the Con-
strained Expressions framework are not applicable. The issue is that while they leverage system
transformations to gain speed and scalability, the transformations make the system inherently
uninspectable.

6.1.3 Regular Expression Matching

Myers, Miller, and Knight [34, 37] describe algorithms for approximately matching a string to a
regular expression, using insertion, deletion, and substitution operations. These methods build on
the dynamic programming techniques of string-to-string comparison algorithms, and extend this
to regular expressions. For simple operation and symbol weightings, equivalent to our SSD metric,
their algorithms operate in O(MN) time.

However, dealing with multi-symbol blocks (or gaps), as our NSD metric requires, complicates
matters significantly. In general, for both string-to-string comparisons [21] and string-to-regular-
expression comparisons [37], arbitrary cost functions for blocks require at least O(MNmax(M,N)),
or cubic time.7

The regular expression algorithm takes advantage of the simplicity of its modeling paradigm.
In general, constructs used in process modeling languages are not reducible to regular expres-
sions. More powerful, yet still restricted, constructs have been studied. For example, context-free
languages are thought to have high-order polynomial time algorithms for solving approximate
matching [34].

In general, these super-quadratic to cubic techniques, while providing optimal answers, are
impractical. They also generally have large constants in the actual running times.

6.2 Incremental, Data-Driven Matching

The survey of related approaches presented above leads one to the conclusion that the general
model event stream derivation problem has no known efficient, optimal solutions. In fact, some
formulations of the problem are known to not have optimal solutions that are efficient.

Fortunately, the problem is not quite so bad as it seems. First, we observe that the execution
event stream likely corresponds, at least in places, to any reasonable model of the process. If this

7Better results can be obtained if one assumes concave block costs, where F (Bi)− F (Bi−1) ≥ F (Bi+1) − F (Bi),
that is, where the difference between the cost of a block of length i + 1 and i is non-increasing as i increases. With
this assumption, regular expression matching takes O(MN(logM + log2N)) time, but also takes O(MN +Nlog2N)
space. Our NSD metric, in general, does not have concave block costs. In fact, in our formulation, we use convex
costs because a longer block represents a more serious deviation from the process model. In other areas a block cost
function is naturally concave. For example, in DNA matching, the high cost of physically breaking the sequence
means that as a block gets longer then the cost of breaking can be amortized over the length of the block. This
results in a concave cost function.

13

were not true, then the model would be so contrary as to be immediately and obviously useless. Sec-
ond, we can use the execution event stream to help guide our search of the model, thus significantly
cutting down on the required search space. In particular, we traverse the execution event stream
and incrementally derive events for the model event stream by consulting the model. Where the
model and the execution stream match, the model stream will simply mirror the execution stream.
Where they do not match, some method that searches the model will need to be employed to find
the minimum cost set of inserted and deleted events so that the execution stream can be changed
to continue to match the model. The matched, inserted, and deleted events exactly describe the
model stream that is induced from the model and that the metric then uses.

The resulting approach implies a state-space search, one that uses heuristics to control the state
explosion. The states in the space are not just the states in the process model state space, but
also includes the position of the event in the execution stream that is currently being examined,
and the operation (match, insertion, or deletion) that led to the state. Since the search only moves
forward in the execution stream, the whole state space is always a tree of states, even if the process
model’s state space is not.

Figure 5 shows a partial view of the search space matching a string to an FSM. The search
states are labeled with the FSM state, the position in the given string, and the operation (match,
insertion, or deletion) with token type that created this search state. The bold search states
represent the lowest-cost path, assuming that deletion is weighted less than insertion. The lowest-
cost path deletes one token, and the resulting model string ABA is the closest one to the given
string, ABBA. If insertion is weighted less than deletion, the model string ABABA would be the
closest one, since inserting the single A would be cheaper than deleting a single B.

An obvious candidate for this approach is best-first search. While the standard depth-first and
breadth-first searches of a tree of states are exhaustive in a single dimension, best-first search is
a heuristic-driven search that determines its search path by following the lowest-cost paths in the
state space. For each state S with a parent Sp, a cost is estimated by

EstimatedCost(S) = Cost(Ss, Sp) + Cost(Sp, S) + Estimate(S, Sg)

where Ss is the start state and Sg is the goal state. In other words, the total estimated cost is the
known cost of getting from the start state Ss to Sp, plus the new known cost of getting from the
parent Sp to the new state S, plus an estimate of the cost of getting from S to a goal state Sg. The
heuristic is in estimating the cost of going from S to a goal state Sg.

The best-first search uses a priority queue of states to be evaluated, and always evaluates the
lowest-cost state on the priority queue. When it reaches a goal state, one can either stop or go
through one more iteration of states to make sure that the goal found is not likely to be usurped
by a lower-cost goal. This method is not guaranteed to find a minimum cost solution unless the
heuristic estimator can be proven to always underestimate the true cost [39]. If this is true, then
the first goal found will always be a lowest-cost goal. Without adding estimations of the cost to a
goal state, this method is referred to as uniform cost, since it also always finds a lowest-cost goal.
Unfortunately, always underestimating the true cost (which includes uniform cost) also guarantees
that every state that is lower cost than the goal itself will be inspected.

Since we are trying to calculate minimum cost distance metrics, it is natural to use the metrics
to assign actual costs to the states during our state search. In fact, we must use the metrics as
actual costs in order to guarantee we are minimizing the correct function. But the question of how
to estimate the cost of reaching a goal remains. The goal state in validation can be defined as the
state matching (or deleting) the last event in the execution event stream. One might want to define

14

a goal state as a state that contains a termination state of the process model, but this is not as
flexible, since it does not allow validation of incomplete process executions.

The SSD and NSD metrics are already normalized with respect to the length of the event stream,
so the position in the event stream is factored out of the cost assigned to a state. Thus, we might
say that the estimated total cost of reaching a goal state is just the value of the SSD or NSD metric
that has been calculated so far—that is, the cost of the current state. This assumes that the event
stream processed so far is representative of the total stream, and that the metric calculation will not
greatly change. This heuristic estimator (and cost metric) does not always underestimate the goal
state cost, so it is not guaranteed to find the minimum cost goal. In particular, from a given state
there may be continual matches (zero cost) to the end of the stream, thus allowing the distance
metric to diminish towards zero as the length increases. Trying to construct a complex estimator
that is tailored toward indentifying these anomolous cases is counterproductive. However, we have
found it to be a reliable estimator and in practice we have never seen a case where the minimum
cost goal was not reached.

6.3 Pruning

The technique of pruning a state space has proven to be useful in reducing the cost of finding a
low-cost goal [39]. Pruning discards portions of the state space that look unpromising. By pruning,
one cannot guarantee a lowest-cost goal. But in some domains, such as game playing, “smart”
pruning has negligible effects on the outcome of the search while dramatically reducing search
costs. Pruning takes many forms and can use vastly different methods and heuristics.

One heuristic that we employ is to discard any newly generated state that has an estimated
cost higher than some threshold relative to the current best-looking state. We refer to this as cost
pruning. The hypotheses behind cost pruning are that the estimated costs are fairly accurate, or
at least predictable, and that a state’s actual cost is not likely to be vastly better than its estimate.
Additionally, cost pruning assumes that one can set a single threshold for the whole state space,
and that this threshold will work consistently.

Our initial observations show that the variability in costs assigned to states should change over
time; in the beginning, especially, there is much larger variability. Thus, for our pruning method,
we set a threshold as a fraction of the current standard deviation of state costs. This lets the
threshold account for some of the variability during the state space search.

Another pruning method we employ is to discard any state that is some specified distance
behind in the execution event stream from the current farthest state. We refer to this as position
pruning. The position pruning heuristic assumes that the most likely paths to the lowest-cost goal
state will be examined in an interleaved fashion—that is, their costs will not fluctuate too widely
from each other, and thus the paths will be expanded close to each other. Then, any unexamined
state that is far enough behind (i.e., more than the specified position pruning parameter) in the
event stream is ignored as unlikely to be on a path to a good goal state. For example, if a state that
was at the 36th event in the event stream was the furthest along in the stream, and the position
pruning parameter was set at 5, all unexamined states that were at events previous to the 31st
event would be discarded. Figure 6 shows the effect of position pruning on a small search tree.
All of the open, not-yet-searched states (the leaves) that were behind the furthest state by more
than 20 were discarded, along with the parent states whose children have all been discarded. This
narrows the search space, resulting in a direct, linear state path to the area of the state space still
being searched.

Our experience with pruning has shown that position pruning consistently performs well for the

15

model event stream derivation problem, while cost pruning is highly variable and often poor in its
performance. We have studied our pruning methods extensively, but detailed discussion is beyond
the scope of this paper. We refer the reader elsewhere for more information [10].

7 Using Validation in an Industrial Case Study

We recently performed a case study of an industrial software process [11]. The goal of the study
was to statistically identify process behaviors that correlated with successful and unsuccessful exe-
cutions of the process. One component of that study involved the use of our validation techniques.
In this section we review the study as an example application of process validation in a real-world
setting.

The study focused on a change request process for a large telecommunications software system.
In this process, a customer reports a problem, the problem is assigned to a developer, the developer
completes and tests a fix, and the fix is sent out to the customer. A successful execution of the
process results in the fix being accepted by the customer, while an unsuccessful execution results in
the fix being rejected. There was no existing formal model of the process, but enough documentation
and informal knowledge existed to be able to create one. In addition, data analysis techniques were
employed to discover possible model fragments from the data themselves [10]. Figure 7 depicts a
state machine model of the process.

We were able to obtain data for 159 executions of this process by extracting events from several
historical archives and merging them to form complete execution streams. The archives included a
source code control system, a modification request tracking system, a customer response database,
and loose-leaf binders of code inspection reports. These 159 streams were divided into two popula-
tions based on their success—one where the fix was accepted (141 streams) and one where the fix
was rejected (18 streams).

Table 3 shows the validation metrics calculated for the case study, where the statistical test
for significant difference between the two populations was the Wilcoxon Rank Sum test, shown in
column 3. The other columns are the p-values (column 2) and the means and standard deviations
of each metric for the two populations. In general, the process execution was highly variable, with
somewhat less than 65% of the behavior matching the model. With equal insertion and deletion
weights, the NSD metric, using k = 1, showed statistically significant differences between the
successful (accepted fix) and unsuccessful (rejected fix) process executions, while the SSD metric
did not. Looking at the components of the metrics, we see that only deletions were significant, but
then only weakly so.

By using the detailed information provided by the validation techniques—especially the event
type that was matched, inserted, or deleted, and the model state in which each such operation was
applied—we were able to localize the statistical differences between the two populations in terms
of where in the model the differences appeared and on what specific type of events. The shaded
states in Figure 7 are those locations in the model. That is, the difference in the relative amount
of events matched from a shaded state (instead of inserted or deleted) is statistically significant
between the accepted-fix and rejected-fix populations. In this study, the accepted-fix population
had more matches, and thus followed the process model more closely.

The multi-leveled analysis of this study shows the power of the information that the validation
methods provide: once a gross metric (such as NSD) indicates a problem, the detailed information
available lets one perform an in-depth analysis, directly seeing where the process might be breaking
down. Indeed, our results led to suggestions about where in the process some adjustments might
be useful.

16

P-value Sig Test Accept Pop.(N=141) Reject Pop.(N=18)
Measure (2-tailed) (W) Mean Std Dev Mean Std Dev

SSD 0.41 0.82 0.56 0.22 0.61 0.23
NSD 0.00 3.65 24.49 83.90 59.96 95.82

Matches 0.79 0.27 21.15 16.25 21.39 8.55
Insertions 0.10 1.63 7.18 2.90 8.28 3.16
Deletions 0.27 1.11 7.71 5.74 10.17 7.77

Insertion blocks 0.49 -0.68 3.48 1.51 3.22 1.52
Deletion blocks 0.74 -0.34 4.20 1.91 4.22 2.34

Table 3: Validation Metrics Calculated in the Case Study.

8 Related Work

There is related work in the area of process improvement that uses data to characterize processes,
but none that uses data in a process validation activity.

• Chmura et al. [9] and Bhandari et al. [7] try to deduce problems in the process by looking
at defect data in the products. Specifically, they statistically analyze change data and effort
data to determine the behavior of the process. For example, they can see ripple effects from
interface changes and high percentages of fix-on-fix changes.

• Garg et al. [26] employ a manual process history analysis in the context of a meta-process for
creating and validating domain-specific process models and software toolkits.

• Pérez et al. [38] propose methods for evaluating the congruence of process models. Congruence
is a measure of how well an environment can accommodate a given process model, based on
the tools and activities already in that environment. The effort here is to predict how well a
specific process will fit into an environment, rather than whether or not the model is followed
once it is deployed.

• Cugola et al. [14] define a formal framework for reasoning about inconsistencies and deviations
in a process. Their approach is directed towards processes that are controlled by a process
support system using an enacted model. Their goal is to enable these systems to allow,
coordinate, and resolve deviations from the model. In this respect, their work is similar to
ours, but they do not use data derived from the process execution to measure the deviations.

We feel that our work effectively complements these other approaches to process improvement by
raising confidence in the correspondence between formal models and executions of processes.

In using event-based data to compare an execution with a formal model, our work also relates
to that of distributed debugging and history checking.

• Bates [5] uses “event-based behavioral abstraction” to characterize the behavior of programs.
He attempts to match the event data to a model based on regular expressions. However, he
only marks the points at which the data and model do not match, rather than attempting to
provide aggregate measures of disparity.

17

• Cuny et al. [15] build on the work of Bates, attempting to deal with large amounts of event
data by providing query mechanisms for event relationships. They assume that there is some
problem somewhere in the event stream and that one is trying to locate that problem.

• Felder et al. [22, 23] describe a method and tool by which one can compare an execution
history against a temporal logic specification to decide the correctness of that execution with
respect to the model. Our goal is to quantify discrepancies, and therefore we take a more
pragmatic approach to “correctness”.

9 Conclusion

We have developed two metric-oriented techniques for process validation, from a linear distance
measure in terms of event insertions and deletions, to a non-linear distance measure that takes into
account the size of discrepancies. The metrics are independent of any specific behavioral process
modeling paradigm, and thus have wide applicability.

The process validation techniques have been implemented as part of the Balboa process data
analysis framework [13]. The current implementation works with finite state machine models of
processes. The user interface for selecting execution streams and process models, and for viewing
the results of a process validation, is shown in Figure 8.

The upper portion of the window provides a quantitative view of the validation results at
three levels of detail: the counts of individual insertions and deletions; the counts of the blocks of
insertions and deletions; and the calculated distance measurements. To the left of these results are
a summary of the parameters used to control the metrics calculations.

The lower portion of the window provides a scrollable, visual summary of the detailed differences
between the process as executed and the process as predicted. Extra events in the execution stream
are highlighted in one color (shown here as light grey bands), while missing events in the execution
stream are highlighted in another color (shown here as dark grey bands).

There are many directions that future work in process validation can take, including the fol-
lowing.

• Identifying additional properties of process models that can be exploited in performing vali-
dation. For example, points in a model where one can fix the execution stream and ignore
previous behavior could help reduce the search cost in a large model. This is similar to the
concept of trace change points [19].

• Developing improved techniques for visualizing the results of validation. For example, over-
laying the differences onto the process model rather than onto the model event stream may
help a process engineer better understand the problems in the process.

• Investigating other analyses for process executions and process models. For example, time-
oriented metrics, perhaps derived from the area of real-time analysis [23, 42], would be a
useful extension to execution stream analysis. Methods for measuring the efficiency of a
process would be another useful analysis method. Both would help in the optimization of a
process that has already been behaviorally validated.

We intend to explore these and other directions, to continue improving the practicality and useful-
ness of process validation techniques, and to further experiment with their application in industrial
settings.

18

Acknowledgments We appreciate the many helpful comments on this work provided by
Clarence (Skip) Ellis, Dennis Heimbigner, David Rosenblum, Lawrence Votta, and Benjamin Zorn.

19

REFERENCES

[1] A.V. Aho and T.G. Peterson. A Minimum Distance Error-Correcting Parser for Context-Free Lan-
guages. SIAM Journal on Computing, 1(4):305–312, December 1972.

[2] G.S. Avrunin, U.A. Buy, J.C. Corbett, L.K. Dillon, and J.C. Wileden. Automated Analysis of Concur-
rent Systems with the Constrained Expression Toolset. IEEE Transactions on Software Engineering,
17(11):1204–1222, November 1991.

[3] S. Bandinelli, A. Fuggetta, and C. Ghezzi. Software Process Model Evolution in the SPADE Environe-
ment. IEEE Transactions on Software Engineering, 19(12):1128–1144, December 1993.

[4] S. Bandinelli, A. Fuggetta, C. Ghezzi, and L. Lavazza. SPADE: An Environment for Software Process
Analysis, Design, and Enactment. In A. Finkelstein, J. Kramer, and B. Nuseibeh, editors, Software
Process Modeling and Technology, pages 223–248. Wiley, 1994.

[5] P. Bates. Debugging Heterogenous Systems Using Event-Based Models of Behavior. In Proceedings of
a Workshop on Parallel and Distributed Debugging, pages 11–22. ACM Press, 1989.

[6] I.S. Ben-Shaul and G.E. Kaiser. A Paradigm for Decentralized Process Modeling and its Realization
in the Oz Environment. In Proceedings of the 16th International Conference on Software Engineering,
pages 179–188. IEEE Computer Society, May 1994.

[7] I. Bhandari, M. Halliday, E. Tarver, D. Brown, J. Chaar, and R. Chillarege. A Case Study of Software
Process Improvement During Development. IEEE Transactions on Software Engineering, 19(12):1157–
1170, December 1993.

[8] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic Model Checking: 1020

States and Beyond. Information and Computation, 98:141–170, 1992.

[9] L.J. Chmura, A.F. Norcio, and T.J. Wicinski. Evaluating Software Design Processes by Analyzing
Change Data Over Time. IEEE Transactions on Software Engineering, 16(7):729–739, July 1990.

[10] J.E. Cook. Process Discovery and Validation through Event-Data Analysis. Technical Report CU-CS-
817-96, University of Colorado, University of Colorado, Boulder, Colorado, November 1996.

[11] J.E. Cook, L.G. Votta, and A.L. Wolf. A Methodology for Cost-Effective Analysis of In-Place Software
Processes. Technical Report CU-CS-825-97, University of Colorado, University of Colorado, Boulder,
Colorado, January 1997.

[12] J.E. Cook and A.L. Wolf. Toward Metrics for Process Validation. In Proceedings of the Third Interna-
tional Conference on the Software Process, pages 33–44. IEEE Computer Society, October 1994.

[13] J.E. Cook and A.L. Wolf. Balboa: A Framework for Event-Based Process Data Analysis. June 1998.
To appear.

[14] G. Cugola, E. Di Nitto, A. Fuggetta, and C. Ghezzi. A Framework for Formalizing Inconsistencies and
Deviations in Human-Centered Systems. ACM Transactions on Software Engineering and Methodology,
5(3):191–230, July 1996.

[15] J. Cuny, G. Forman, A. Hough, J. Kundu, C. Lin, L. Snyder, and D. Stemple. The Adriane Debug-
ger: Scalable Application of Event-Based Abstraction. In Proceedings of the ACM/ONR Workshop on
Parallel and Distributed Debugging, pages 85–95. ACM Press, 1993.

[16] J.L. Devore. Probability and Statistics for Engineering and the Sciences. Brooks/Cole, Pacific Grove,
California, 3rd edition, 1991.

[17] L.K. Dillon, G.S. Avrunin, and J.C. Wileden. Constrained Expressions: Toward Broad Applicability
of Analysis Methods for Distributed Software Systems. ACM Transactions on Programming Languages
and Systems, 10(3):374–402, July 1988.

[18] M.W. Du and S.C. Chang. A Model and a Fast Algorithm for Multiple Errors Spelling Correction.
Acta Informatica, 29:281–302, 1992.

20

[19] Z. K. F. Eckert and G. J. Nutt. Trace Extrapolation for Parallel Programs on Shared Memory Multipro-
cessors. Technical Report TR CU-CS-804-96, Department of Computer Science, University of Colorado,
May 1996.

[20] C.A. Ellis, K. Keddara, and G. Rosenberg. Dynamic Change within Workflow Systems. In Proceedings
of the Conference on Organizational Computing Systems, pages 10–21. ACM SIGOIS, August 1995.

[21] D. Eppstein. Sequence Comparison with Mixed Convex and Concave Costs. Journal of Algorithms,
11:85–101, 1990.

[22] M. Felder, D. Mandrioli, and A. Morzenti. Proving Properties of Real-time Systems Through Logi-
cal Specifications and Petri Net Models. IEEE Transactions on Software Engineering, 20(2):127–141,
February 1994.

[23] M. Felder and A. Morzenti. Validating Real-time Systems by History-checking TRIO Specifications.
In Proceedings of the 14th International Conference on Software Engineering, pages 199–211. IEEE
Computer Society, May 1992.

[24] C.N. Fischer and J. Mauney. A Simple, Fast, and Effective LL(1) Error Repair Algorithm. Acta
Informatica, 29:109–120, 1992.

[25] P.K. Garg and M. Jazayeri. Process-Centered Software Engineering Environments: A Grand Tour. In
A. Fuggetta and A.L. Wolf, editors, Software Process, number 4 in Trends in Software, pages 25–52.
Wiley, London, 1996.

[26] P.K. Garg, M. Jazayeri, and M.L. Creech. A Meta-Process for Software Reuse, Process Discovery, and
Evolution. In Proceedings of the 6th International Workshop on Software Reuse, November 1993.

[27] J. Grudin. Groupware and Cooperative Work: Problems and Prospects. In B. Laurel, editor, The Art
of Human Computer Interface Design. Addison-Wesley, Reading, Massachusetts, 1990.

[28] V. Gruhn and R. Jegelka. An Evaluation of FUNSOFT Nets. In Proceedings of the Second European
Workshop on Software Process Technology, number 635 in Lecture Notes in Computer Science, pages
196–214. Springer-Verlag, September 1992.

[29] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, and A. Shtul-Trauring. STATE-
MATE: A Working Environment for the Development of Complex Reactive Systems. In Proceedings of
the 10th International Conference on Software Engineering, pages 396–406. IEEE Computer Society,
April 1988.

[30] M.L. Jaccheri and R. Conradi. Techniques for Process Model Evolution in EPOS. IEEE Transactions
on Software Engineering, 19(12):1145–1156, December 1993.

[31] K. Jensen. Coloured Petri nets. In W. Brauer, W. Reisig, and G. Rozenberg, editors, Petri Nets:
Central Models and Their Properties, volume 254 of Lecture Notes in Computer Science, pages 248–
299. Springer, 1986.

[32] R.L. Kashyap and B.J. Oommen. The Noisy Substring Matching Problem. IEEE Transactions on
Software Engineering, 9(3):365–370, 1983.

[33] M.I. Kellner, P.H. Feiler, A. Finkelstein, T. Katayama, L.J. Osterweil, M.H. Penedo, and H.D. Rombach.
Software Process Modeling Example Problem. In Proceedings of the 6th International Software Process
Workshop, pages 19–29, October 1990.

[34] J.R. Knight and E.W. Myers. Approximate Regular Expression Pattern Matching with Concave Gap
Penalties. Algorithmica, 14:85–121, 1995.

[35] J.B. Kruskal. An Overview of Sequence Comparison. In D. Sankoff and J.B. Kruskal, editors, Time
Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison, pages
1–44. Addison-Wesley, Reading, Massachusetts, 1983.

21

[36] R.J. LeBlanc and A.D. Robbins. Event-Driven Monitoring of Distributed Programs. In Proceedings of
the Fifth International Conference on Distributed Computing Systems, pages 515–522. IEEE Computer
Society, May 1985.

[37] E.W. Myers and W. Miller. Approximate Matching of Regular Expressions. Bulletin of Mathematical
Biology, 51(1):5–37, 1989.

[38] G. Pérez, K. El Emam, and N.H. Madhavji. A System for Evaluating the Congruence of Software
Process Models. Technical Report SE-94-7, McGill University, Montreal, Canada, March 1994.

[39] E. Rich. Artificial Intelligence. McGraw-Hill Series in Artificial Intelligence. McGraw-Hill, 1983.

[40] J. Röhrich. Methods for the Automatic Construction of Error Correcting Parsers. Acta Informatica,
13:115–139, 1980.

[41] M. Schneider, H. Lim, and W. Schoaff. The Utilization of Fuzzy Sets in the Recognition of Imperfect
Strings. Fuzzy Sets and Systems, 49:331–337, 1992.

[42] R.L. Schwartz, P.M. Melliar-Smith, and F.H. Vogt. An Interval Logic for Higher-level Temporal Rea-
soning. In Proceedings of the Second ACM Symposium on Principles of Distributed Computing, pages
173–186. Association for Computer Machinery, August 1983.

[43] S.M. Sutton, Jr. Accommodating Manual Activities in Automated Process Programs. In Proceedings
of the 7th International Software Process Workshop. IEEE Computer Society Press, October 1991.

[44] S.M. Sutton, Jr., D. Heimbigner, and L.J. Osterweil. APPL/A: A Language for Software Process
Programming. ACM Transactions on Software Engineering and Methodology, 4(3):221–286, July 1995.

[45] M.S. Waterman. General Methods of Sequence Comparison. Bulletin of Mathematical Biology, 46:473–
501, 1984.

[46] A.L. Wolf and D.S. Rosenblum. A Study in Software Process Data Capture and Analysis. In Proceedings
of the Second International Conference on the Software Process, pages 115–124. IEEE Computer Society,
February 1993.

[47] A.L. Wolf and D.S. Rosenblum. Process-centered Environments (Only) Support Environment-centered
Processes. In Proceedings of the 8th International Software Process Workshop, pages 148–149. IEEE
Computer Society Press, March 1993.

22

<95% >=95%ok not ok

exec <mod>−test <n>

co <mod>−tests

tcov <mod>−testdiff t<n>.out t<n>.ok

make <mod>−test

ci <mod>−results

mail <developers> mail <testers> mail <manager>

tests done

diff result

test failed

test problem
module
problem all done & ok

coverage
percentage

test binary
ready

test case
ready

fetch test
package

make test
binary

test case
done

tests
passed

begin
test−unit

Figure 4: Petri Net Model of the ISPW 6/7 Test Module Task.

23

1

2

A B

1,1,-

1,2,D(A) 2,2,M(A) 2,1,I(A)

2,3,D(B) 1,3,M(B) 1,2,I(B)

1,4,D(B) 2,3,I(A)

1,End,D(A) 2,End,M(A)

(a) (b)

Figure 5: A Two-State FSM Model (a) and a Partial Search Tree (b) At-
tempting to Match the String ABBA.

2f158

30248

1-D-0

30280

0-I-0

302b8

0-I-0

302f0

0-I-0

30328

1-A-0

303e8

2-D-0

30420

2-A-0

2f108

3-D-0

8e318

3-A-0

8e410

4-A-0

8e4d0

5-D-0

8e508

5-A-0

8f018

6-D-0

8f050

5-I-0

8e5c8

6-D-0

8e600

5-I-0

8e638

5-I-0

8e6f8

7-D-0

8e730

6-I-0

8e768

6-I-0

8f088

6-D-0

8f0c0

6-A-0

8f0f8

5-I-0

8f130

5-I-0

8f168

5-I-0

8e7a0

6-D-0

8e7d8

5-I-0

8f1a0

7-D-0

8f1d8

7-A-0

8f2d0

8-A-0

8f390

9-D-0

8f400

9-A-0

8e3d8

10-D-0

8fae8

9-I-0

8fb20

10-A-0

8f4c0

10-D-0

8f4f8

10-A-0

8fb58

11-D-0

8fb90

10-I-0

8fa78

11-D-0

8fab0

10-I-0

8f5b8

11-D-0

8f5f0

11-A-0

8fa08

12-D-0

8fa40

11-I-0

8f6b0

12-D-0

8f6e8

12-A-0

8f298

12-I-0

8f3c8

13-D-0

8f928

13-D-0

8f960

12-I-0

8f7a8

13-D-0

8f7e0

12-I-0

8fd30

14-D-0

8fd68

13-I-0

8fe10

13-D-0

8fe48

12-I-0

8f8a0

14-D-0

8f8d8

13-I-0

8f998

13-D-0

8f9d0

12-I-0

8fc50

15-D-0

8fc88

14-I-0

8fcc0

14-D-0

8fcf8

13-I-0

8fda0

14-D-0

8fdd8

13-I-0

8fe80

13-D-0

8feb8

13-A-0

906f8

14-D-0

90730

14-A-0

90768

15-D-0

907a0

15-A-0

91268

16-D-0

912a0

16-A-0

91360

17-D-0

91398

17-A-0

91490

17-I-0

914c8

18-A-0

915c0

19-A-0

916b8

20-A-0

917b0

21-D-0

91820

21-A-0

92130

21-I-0

92168

21-I-0

91928

22-A-0

919e8

23-D-0

91a58

23-A-0

91ec8

24-D-0

91b18

24-D-0

91b50

24-A-0

91b88

23-I-0

923b0

25-D-0

923e8

24-I-0

92420

24-I-0

91db0

25-D-0

91de8

24-I-0

91e20

24-I-0

91c48

25-D-0

91c80

24-I-0

91f70

24-D-0

92298

26-D-0

922d0

25-I-0

92308

25-I-0

924c8

25-D-0

92500

24-I-0

91588

25-D-0

916f0

24-I-0

91d40

26-D-0

91d78

25-I-0

91e58

25-D-0

91e90

24-I-0

92458

25-D-0

92490

24-I-0

92228

27-D-0

92260

26-I-0

91680

26-D-0

917e8

25-I-0

92340

26-D-0

92378

25-I-0

92d40

25-D-0

92d78

25-A-0

91458

27-I-0

92088

28-D-0

92db0

26-D-0

92de8

26-A-0

91f38

918e0

33-D-0

92018

33-A-0

92050

32-I-0

920c0

34-D-0

920f8

33-I-0

94040

34-A-0

94078

33-I-0

940b0

33-I-0

94170

35-D-0

941a8

35-A-0

941e0

34-I-0

92e20

27-D-0

92e58

27-A-0

92e90

26-I-0

91f00

27-I-0

91fa8

28-D-0

91fe0

27-I-0

92f50

28-D-0

92f88

28-A-0

93dc8

29-D-0

93e00

29-A-0

93048

29-D-0

93080

29-A-0

93e38

30-D-0

93e70

29-I-0

93cb0

30-D-0

93ce8

29-I-0

93140

30-D-0

93178

29-I-0

93238

31-D-0

93270

30-I-0

93d20

30-D-0

93d58

29-I-0

93d90

29-I-0

32-A-0

91a20

32-D-0

942a0

36-D-0

942d8

36-A-0

94310

35-I-0

943d0

37-D-0

94408

37-A-0

94ad0

38-D-0

94b08

38-A-0

94bc8

39-D-0

94c00

39-A-0

94cc0

40-D-0

94cf8

40-A-0

94d30

39-I-0

94df0

41-D-0

94e28

40-I-0

94e60

41-A-0

94e98

40-I-0

94ed0

40-I-0

94f90

42-D-0

94fc8

41-I-0

95000

42-A-0

abcde

0-U-0

2f050

8e4d0

30-D-0

8fdb8

29-I-0

2f088

8fc50

30-D-0

8fc88

29-I-0

8fd48

31-D-0

8fd80

30-I-0

8fdf0

30-D-0

8fe28

29-I-0

8fe60

29-I-0

2f158

30328

1-A-0

30420

2-A-0

2f998

2f9d0

30-D-0

2fa08

29-I-0

2fc10

2fd40

35-D-0

2fd78

35-A-0

2fdb0

34-I-0

2fe70

36-D-0

2fea8

36-A-0

2fee0

35-I-0

2ffa0

37-D-0

2ffd8

37-A-0

30098

38-D-0

300d0

38-A-0

8f7a8

39-D-0

95ea0

39-A-0

95f60

40-D-0

95f98

40-A-0

95fd0

39-I-0

8e318

3-A-0

303e8

8e780

26-D-0

8e7b8

25-I-0

8e410

4-A-0

304e0

34-A-0

2fbd8

33-I-0

2fc48

33-I-0

2fc80

33-I-0

8f3c8

34-D-0

8e508

5-A-0

8e3d8

30230

25-D-0

30268

24-I-0

302a0

24-I-0

8e600

5-I-0

8f0c0

6-A-0

8e5c8

8f148

27-D-0

8f180

26-I-0

91360

27-I-0

91588

28-D-0

8f1d8

7-A-0

8e638

302d8

25-D-0

8fa08

25-A-0

8fa40

26-D-0

8fa78

26-A-0

8f2d0

8-A-0

8f400

9-A-0

8f298

8f8a0

25-I-0

91680

25-I-0

917e8

26-D-0

8f4f8

10-A-0

8f5f0

11-A-0

8f6e8

12-A-0

8f5b8

8f8d8

26-D-0

8f910

25-I-0

8f7e0

12-I-0

8f9d0

12-I-0

8feb8

13-A-0

90730

14-A-0

8fab0

27-D-0

8fae8

27-A-0

8fb20

26-I-0

8f4c0

27-I-0

906f8

27-I-0

91268

28-D-0

8fb58

28-D-0

8fb90

28-A-0

29-A-0

8f6b0

29-D-0 29-D-0 29-A-0

916f0

32-D-0

91a20

32-A-0

33-A-0

8f390

32-I-0

918e0

33-D-0

907a0

15-A-0

912a0

16-A-0

90768

301c0

25-D-0

301f8

24-I-0

91398

17-A-0

914c8

18-A-0

915c0

19-A-0

916b8

20-A-0

917b0

21-D-0

91820

21-A-0

91458

21-I-0

91490

21-I-0

91928

22-A-0

919e8

23-D-0

91a58

23-A-0

24-D-0

91b18

24-D-0

91b50

24-A-0

91b88

23-I-0

25-D-0

91c48

25-D-0

91c80

24-I-0 24-D-0

26-D-0 25-I-0 25-D-0 24-I-0

96090

41-D-0

960c8

40-I-0

96100

41-A-0

96138

40-I-0

96170

40-I-0

96230

42-D-0

96268

41-I-0

962a0

42-A-0

96360

43-D-0

96398

42-I-0

963d0

42-I-0

abcde

0-U-0

Figure 6: Search Tree Before and After Position Pruning.

24

1

3

carod-abstract

14

12

mr-smit mr-test-plan

15

mr-asnmymr

19

21

carod-response20

mr-killmrnm

4

carod-create

5

carod-dcreated

carod-dupdated

6

carod-inhouse

7

mr-createmymr

carod-response

mr-createmr-createmymr

8

mr-acceptmr

mr-acceptmr

9

mr-asnmymr mr-assign

mr-asnmymrmr-assign

10

code-inspect

28

code-checkin

11

code-checkin

code-checkin

mr-smit mr-test-plan

13

mr-test-planmr-smit

mr-smitsys

mr-smit

16

mr-bwmbuilt

18

mr-approve

17

mr-acptsys

mr-approve

mr-integrate

22

carod-solved

mr-asnmymr

23

carod-closed

24

carod-delivered

25

carod-update27

carod-dupdated

26

carod-custdue

mr-asnmymr

carod-update

code-inspect

code-checkin

Figure 7: Process Model Used in the Case Study.

25

Figure 8: User Interface of the Validation Tool.

26

